
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Akash Garg
Univ. of California, Irvine
agarg@ics.uci.edu

Matt Critchlow
Univ. of California, Irvine
critchlm@ics.uci.edu

Ping Chen
Univ. of California, Irvine
pchen@ics.uci.edu

Christopher Van der
Westhuizen
Univ. of California, Irvine
cvanderw@ics.uci.edu

André van der Hoek
Univ. of California, Irvine
andre@ics.uci.edu

An Environment for Managing Evolving Product
Line Architectures

March 2003

ISR Technical Report # UCI-ISR-03-1

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425

www.isr.uci.edu

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2003 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
An Environment for Managing Evolving Product Line Architectures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

An Environment for Managing Evolving Product Line Architectures

Akash Garg, Matt Critchlow, Ping Chen, Christopher Van der Westhuizen, André van der Hoek
Institute for Software Research, University of California, Irvine

Irvine, CA 92697-3425
{agarg,critchlm,pchen,cvanderw,andre}@ics.uci.edu

ISR Technical Report # UCI-ISR-03-1

March 2003

Abstract: The use of product lines is recognized as beneficial in promoting and structuring both
component and architecture reuse throughout an organization. While the business practices of
using product lines are well-understood and representations for specifying and capturing the
underlying architecture of a product line are coming of age, support environments for managing
the evolution of a product line architecture are still lacking. In this paper, we present Ménage, an
environment specifically designed to alleviate this problem. Key features of Ménage are its
support for: (1) specifying variation points in a product line architecture as optional and/or
variant elements, (2) tracking the evolution of a product line architecture and its constituent
elements through explicit versioning techniques, and (3) selecting one or more product
architectures out of an overall product line architecture by applying user-specified criteria. In this
paper, we introduce the approach underlying Ménage, discuss its detailed functionality, and
demonstrate its use with a product line architecture for entertainment systems.

An Environment for Managing Evolving Product Line Architectures

Akash Garg, Matt Critchlow, Ping Chen, Christopher Van der Westhuizen, André van der Hoek
School of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425 USA

{agarg,critchlm,pchen,cvanderw,andre}@ics.uci.edu

ISR Technical Report # UCI-ISR-03-01
March 2003

Abstract

The use of product lines is recognized as beneficial in
promoting and structuring both component and architec-
ture reuse throughout an organization. While the busi-
ness practices of using product lines are well-understood
and representations for specifying and capturing the un-
derlying architecture of a product line are coming of age,
support environments for managing the evolution of a
product line architecture are still lacking. In this paper,
we present Ménage, an environment specifically designed
to alleviate this problem. Key features of Ménage are its
support for: (1) specifying variation points in a product
line architecture as optional and/or variant elements, (2)
tracking the evolution of a product line architecture and
its constituent elements through explicit versioning tech-
niques, and (3) selecting one or more product architec-
tures out of an overall product line architecture by apply-
ing user-specified criteria. In this paper, we introduce
the approach underlying Ménage, discuss its detailed
functionality, and demonstrate its use with a product line
architecture for entertainment systems.

1. Introduction

The use of product lines in industrial software devel-
opment is steadily gaining acceptance, especially since it
has been shown that their disciplined use, as backed by
strong organizational commitment, can lead to significant
advantages in terms of reduced development cost and time
[2,4,6]. Organizations such as Nokia [18], Alcatel [22],
and Philips [11] have already reported on successfully
introducing product lines for some of the software they
are developing. Other organizations are not far behind
[23].

Instead of focusing on developing a single product at a
time (or, at best, multiple, relatively independent prod-
ucts in parallel), the use of a product line carefully coor-
dinates the design, development, and evolution of a set of
intimately related products. As compared to component-
based software development [15], this entails a paradigm
shift from component reuse to architecture reuse. Compo-
nent-based software development focuses on the creation

of reusable component implementations that are subse-
quently integrated and adapted to form entirely new, often
unrelated applications. The use of a product line, on the
other hand, is firmly rooted in the development of a stan-
dard product line architecture that, along with a standard
set of components implementing the core of the architec-
ture, forms a reusable basis for the development of new,
closely related members in the product line.

The issues involved in creating a development process
and business environment tailored to the use of a product
line architecture are relatively well understood [4]. Addi-
tionally, representations for specifying and storing prod-
uct line architectures have already been developed
[3,10,14,32]. Effective use of a particular product line
architecture, however, also requires a support environment
to manage its evolving structure—an area of research that
has largely been ignored to date.

This paper introduces Ménage, an environment that is
specifically designed to fill this void. Ménage builds
upon our existing representation for product line architec-
tures, xADL 2.0 [9,10], to provide a software architect
with three capabilities that are explicitly geared towards
managing an evolving product line architecture. First,
Ménage supports the specification of a product line archi-
tecture as a set of core architectural elements that is aug-
mented with variation points. These variation points are
optional, variant, or optional variant elements, and pre-
cisely define the dimensions along which individual
product architectures structurally differ from each other.

Second, Ménage uses explicit versioning techniques to
track the evolution of all parts of a product line architec-
ture. Every element, ranging from an individual interface
type to the overall product line architecture (which poten-
tially can be very large), is explicitly versioned and must
be checked out before it can be modified and checked in
after the modifications are complete.

Finally, Ménage allows an architect to select one or
more product architectures out of an overall product line
architecture. Using a user-specified set of criteria (which
are expressed as name-value pairs), Ménage creates a re-
duced version of the original product line architecture. If
all variation points are completely resolved, the result is a
single product architecture; if one or more variation points
remain (partially) unresolved, the result is a smaller prod-

uct line architecture containing fewer product architec-
tures. Additional selections may be performed to further
reduce the size of the product line architecture and its
number of available product architectures.

The remainder of this paper is organized as follows.
First, in Section 2, we discuss relevant background mate-
rial in the field of product line architectures. We detail the
problem of managing the evolution of product line archi-
tectures in Section 3, and introduce the approach underly-
ing Ménage in Section 4. We describe Ménage in detail in
Section 5, and show its application on an entertainment
system product line architecture in Section 6. We discuss
related work in Section 7 and conclude in Section 8 with
an outlook at our future work.

2. Background

Software architectures provide high-level abstractions
for representing the structure, behavior, and key properties
of a software system [21]. These abstractions typically
involve: (1) descriptions of the elements from which sys-
tems are built, (2) interactions among those elements, (3)
patterns that guide their composition, and (4) constraints
on those patterns. In general, a software architecture is
defined as a set of components, a set of interconnections
among those components (connectors), and the overall
organization of the components and connectors into a
single system (configuration).

Whereas a “regular” software architecture only defines
the structure of a single software system, a product line
architecture defines the architectural structure for a set of
related products [4,6]. As such, a product line architecture
consists of a set of closely related product architectures,
each product architecture defining the software architecture
of one, unique product in the product line. To maximize
reuse and understanding, a product line architecture dis-
tinguishes core elements that are present in all product
architectures from variation points that capture differences
among specific product architectures. Three kinds of varia-
tion points are used to distinguish different product archi-
tectures from each other: (1) optional elements, which
describe architectural elements that may or may not be
present in a particular product architecture, (2) variant
elements, which define elements that are always present,
but can be configured to be one of many alternatives, and
(3) optional variant elements, which specify variant ele-
ments that may or may not exist. A particular product
architecture is selected out of a product line architectures
by determining, for each optional element, whether or not
it is included, and, for each variant element, which variant
is incorporated.

Figure 1 introduces a simple example in the form of a
hypothetical product line architecture for a set of related
word processors. Solid boxes indicate core components,
dashed boxes indicate variation points consisting of op-
tional components, and stacks indicate variation points
consisting of variant components. In this case, a product
architecture for one particular word processor always in-

corporates its three core components (USER INTERFACE,
LAYOUT ENGINE, and STORAGE), may or may not in-
clude the optional component PRINT, and always includes
a variant of the spell checking component (ENGLISH SPELL
CHECKER, DUTCH SPELL CHECKER, or FRENCH SPELL
CHECKER). While the example presents a trivial product
line architecture that consists of only a small set of com-
ponents, one can easily imagine more complicated prod-
uct line architectures consisting of many components and
connectors with many complex and interrelated variation
points. The product line architecture for Philips televi-
sions is one example of a real-life product line that exhib-
its many of these characteristics [11].

Perry [24] outlined the space of possibilities for mod-
eling product line architectures and observed that a prod-
uct line architecture modeling technique must be both
generic enough to encompass all members of the product
line architecture and specific enough to provide developers
with adequate support for instantiating and implementing
individual product architectures. While it is technically
possible to reuse architectural styles for this purpose [28],
experience with product line architectures has shown a
need for higher-level support in terms of explicit facilities
for modeling variation points [10,32].

Figure 1. Example Product Line Architec-
ture.

Architecture description languages support architec-
ture-based development [21] by providing formal nota-
tions to describe the architecture of a software system. An
architecture description language is usually accompanied
by various tools for parsing, analysis, simulation, and
code generation of a modeled system. Examples of archi-
tecture description languages include C2SADEL [20],
Darwin [19], Rapide [17], UniCon [27], and Wright [1].
A number of these languages also provide extensive sup-
port for modeling behaviors and constraints on the prop-
erties of components and connectors [21]. However, with
the exception of xADL 2.0 [10], Koala [32], GenVoca [3]
and to some extent Acme [14], existing architecture de-
scription languages do not directly support the specifica-
tion of product line architectures. Given the importance of
product lines in today’s world of software development,
we expect this situation to change rapidly.

3. Problem

It is well known that even a simple software architec-
ture typically evolves at least somewhat over its lifetime.
By the very nature of a product line architecture, it is no
surprise that its overall structure changes far more fre-
quently [5,7]: new product architectures are added, exist-
ing product architectures must be modified in response to
changing functionality requirements, and defunct product
architectures may have to be retired. As a result, a product
line architecture finds itself in constant flux as significant
parts of the product line architecture change. For instance,
optional elements may turn into core elements (and vice
versa), new variants may be added to a variation point, a
component may be further broken down into subcompo-
nents, wholly new product architectures may be added; or
sets of existing product architectures may need to be re-
factored.

Two fundamental concerns for using a product line ar-
chitecture, then, are how to: (1) represent and capture the
evolution of a product line architecture, and (2) support an
architect in managing such evolution. A number of differ-
ent solutions to the first concern have been proposed,
including using a generic configuration management sys-
tem [32], creating a new architecture description language
that explicitly integrates facilities for modeling evolving
product line architectures (e.g., variation points, versions)
[10], and using feature-oriented domain models [16].
Technically, most of these solutions are able to provide
more-or-less equivalent kinds of functionality.

The focus of this paper is on the second concern: how
to help an architect in managing the evolution of a prod-
uct line architecture. Existing environments for architec-
tural design (e.g., ArchStudio 2.0 [20], AcmeStudio [14])
provide little-to-no support for this activity. They, for
example, are not equipped to handle different versions of
components or connectors, provide no explicit change
process, and are focused on the development of a single
software architecture rather than a set of related product
architectures organized in a product line architecture. The
goal of the research presented in this paper is to amelio-
rate this problem and provide architects with a compre-
hensive design environment that explicitly supports them
in managing evolving product line architectures.

4. Approach

The cornerstone of our approach lies in the observation
that a design environment for evolving product line archi-
tectures must provide an architect with integrated architec-
tural and configuration management functionality. Con-
sider, for instance, an architect who wants to quickly ex-
amine a previous version of their product line architecture.
The architect should not have to go to their configuration
management system, check out the previous version, and
then open it in their design environment. Rather, a sup-
port environment for managing evolving product line
architectures must allow an architect to simply choose a
version to view, with the environment itself taking care of
accessing the underlying store to obtain any necessary

data (regardless of whether that store is, for example, a
configuration management system [32] or an architecture
description language that has specific features for model-
ing product line architectures [10]). Numerous other ex-
amples exist of situations in which architects must simul-
taneously access or manipulate information that is related
to both the structure and evolution of a product line archi-
tecture. Without an integrated approach, architects will
not be able to effectively perform their work.

Despite the need for an integrated approach, the pri-
mary focus of any environment for product line architec-
tures should remain on design. The primary task of archi-
tects, after all, is to design, precisely specify, and main-
tain product line architectures.

Overall, then, our approach is rooted in the following
overarching objectives:

• An architect should be able to design a product line
architecture much like they design a “regular” archi-
tecture. In particular, the familiar approach of simply
combining components and connectors must be pre-
served.

• Variation points should be explicit within a product
line architecture, yet seamlessly integrated in the de-
sign process. For instance, the difference between
adding a core component and an optional component
should be minimal.

• Evolution should be managed with an explicit change
management process. In particular, it is important
that a meaningful history of changes is created when
an architect modifies a product line architecture. The
change management process should be non-obtrusive
to allow an architect to focus on their task at hand.

• The environment should automate as much support
as possible. For instance, selection of a particular
product architecture or subset of product architectures
(a “smaller” product line architecture) should not re-
quire manual interpretation of variation points.

Together, these objectives create an environment for man-
aging evolving product line architectures that is familiar
and easy to use, and that provides an architect with auto-
mated and extensive support in all aspects of managing a
product line architecture—ranging from initial inception,
throughout many changes, to eventual selection of indi-
vidual product architectures.
5. Implementation

Figure 2 presents the overall architecture of Ménage, as
consisting of three components. At the lowest level, Mé-
nage uses the xADL 2.0 libraries, which provide a pro-
grammatic interface to load and store (parts of) particular
product line architectures [10]. Two components use those
libraries: a design environment and a selector. The design
environment component provides an architect with facili-
ties to graphically create, inspect, and modify product line
architectures. The selector component complements the
design environment by providing an architect the ability
to select a subset of one or more product architectures out

of a product line architecture. Architecturally, we sepa-
rated the design environment from the selector, since the
selector by itself provides functionality that can be em-
ployed at times when the full design environment is not
needed (for instance, during product selection at a cus-
tomer site). Below, we discuss the details of each of the
components.

Figure 2. Ménage Architecture.

5.1 xADL 2.0 Libraries

The xADL 2.0 libraries [10] provide a programmatic
interface to xADL 2.0 documents containing descriptions
of product line architectures. Specifically, the libraries

provide facilities to create, load, store, and modify xADL
2.0 documents. While xADL 2.0 is built as a set of ex-
tensible XML schemas, the libraries hide all XML details
and allow other components (e.g., the design environment
and selector) to manipulate xADL 2.0 documents in terms
of architectural elements such as components, connectors,
and interfaces.

The full functionality and the degree of extensibility
offered by xADL 2.0, as well as its benefits as compared
to other languages such as Acme [14] or Koala [32], are
beyond the scope of this paper and described elsewhere
[10]. Of importance here, however, are the features that it
provides for modeling product line architectures. We de-
scribe these features briefly.

The core of xADL 2.0 is formed by its STRUCTURE
AND TYPES schema, which defines modeling constructs
for capturing a product architecture at design-time. Spe-
cifically, the schema allows the definition of the structure
of one particular product architecture in terms of a set of
components and connectors. Both components and con-
nectors exhibit interfaces, which are the elements that are
linked together to form the overall structure of the product
architecture (e.g., two components can be “hooked up” via
a connector by placing links in between interfaces on the
components and interfaces on the connector). All elements
are typed, and the STRUCTURE AND TYPES schema sup-
ports the specification of subarchitectures to address scal-
ability in architectural specification.

The xADL 2.0 OPTIONS and VARIANTS schemas ex-
tend the STRUCTURE AND TYPES schema with variation
points, thereby enhancing modeling support in xADL 2.0
from individual product architectures to multiple product
architectures as related in a product line architecture. The

OPTIONS schema allows for the definition of architectural
elements that are optional in a product line architecture.
Optionality is governed by a Boolean guard that deter-
mines the conditions under which the optional element
should be included in a particular product architecture.

Boolean guards also form the core of the VARIANTS
schema. In particular, a component (connector) type may
be a “variant type”, which means that it is a placeholder
for a set of other component (connector) types. Mutually
exclusive Boolean guards determine which type is eventu-
ally used in a selected product architecture. Of note is that
optionality is dealt with at the structural level (e.g., an
element may or may not be part of the structure of a
product line architecture) and variability at the type level
(e.g., the type of a component or connector is one of
many). Therefore, combined optional variant elements are
naturally supported by xADL 2.0.

Finally, the VERSIONS schema allows the modeling of
the evolution of a product line architecture. Each type is
versioned and different versions of a type are organized in
a version graph. An architect, thus, can keep track of the
evolution of both individual elements and the structure of

the overall product line architecture.

5.2 Design Environment

The design environment is the component that an ar-
chitect uses to initially specify and then maintain an
evolving product line architecture. Shown in Figure 3, the
graphical user interface is partitioned into three separate
panels. The panel on the left side lists component types,
connector types, and interface types that have been previ-
ously defined. Instances of these types can be used to
construct other types. The top panel shows the version
graph of the type that is currently displayed in the main
panel. Simply clicking on one of the version nodes brings
up the structure for that version. Finally, the main panel
is where actual design of a product line architecture takes
place. Ménage provides a large number of different edit
operations in support of this activity, ranging from add-
ing components and connectors, to connecting two com-
ponents via their interfaces, to creating and using subar-
chitectures, and many other kinds of useful functionalities
that are customary in architectural design environments.

An important aspect of Ménage is that, during editing,
it always displays the type of every architectural element,
both in terms of its type name and type version. Rather
than relying on a default versioning model such as always
using a latest version, use of specific versions of architec-
tural elements allows an architect to precisely control the
evolution of a product line architecture in terms of which
versions are used, where those versions are used, and
when the versions are changed. In the example of Figure
3, for instance, one can quickly discern that the architect
is currently editing WORDPROCESSOR component type

Figure 3. Specifying a New Version of a Component Type in
Ménage.

version 4, and that it in turn consists of instances of ver-
sions of other component and connector types (e.g., a
USER INTERFACE component of type VISUALBASIC ver-
sion 1, a STORAGE COMPONENT of type FILESYS-
TEMSTORAGE version 2, etc.). Because connectors and
interfaces are visually too small to contain the same level
of information, tool tips are used to provide their relevant
data (as shown for the interface PRINT of interface type
TOP version 1).

5.2.1 Change Process

Before any changes can be made, Ménage requires an
architect to check out the set of architectural elements they
will be modifying. After that, the architect is free to ma-
nipulate those elements in order to change the product
line architecture. Once all desired changes have been
made, the architect checks in the modified parts of the
product line architecture. In response, Ménage automati-
cally creates a new version of each element and, in the
process, creates a history of changes that can be revisited
over time. This history is critical in managing the evolu-
tion of a product line architecture: it captures all the
changes over time, relates those changes to each other,
and allows an architect to revisit previous versions to
understand the nature of past changes.

During the change process, it may happen that an ar-
chitect loses track of which elements they currently have
checked out. Ménage, therefore, provides a mode in which
it highlights those elements in a different color. Moreo-
ver, it supports an architect in checking in either a single
element, an element and the hierarchically contained ele-
ments that are currently checked out, or all checked out
elements. The latter two options allow an architect to
check in related changes as a group.

Once a version has been checked in, that version be-
comes immutable. It can no longer be modified in order
to protect any other parts of the product line architecture
that depend on the immutable element. This guarantees
incremental stability as a product line architecture is de-
signed, and during maintenance guarantees the integrity of
the old versions of the product line architecture.

If an old version must be changed nonetheless, proper
procedure requires that it is checked out again, thereby
creating a branch. Version 2.1 of the WORDPROCESSOR
component type is an example of such a branch. Cur-
rently, Ménage provides no support for merging branches,
but we are in the process of adapting our architectural
differencing and merging algorithms [30] to be able to
operate on product line architectures.
5.2.2 Variation Points

Ménage supports the specification of all three kinds of
variation points: optional elements, variant types, and
optional variant elements. Optional elements are added
just as regular elements, simply by providing a Boolean
guard at the time of creation of the element. The Boolean
guard has to adhere to the following BNF:
 <BooleanGuard> ::= <BooleanExp>
 <BooleanExp> ::= <And> | <Or> | <Not> | <GreaterThan> |
 <GreaterThanOrEquals> | <LessThan> | <LessThanOrEquals> |
 <Equals> | <NotEquals> | <InSet> | <InRange> | <Bool> | <Paren>
 <And> ::= <BooleanExp> && <BooleanExp>
 <Or> ::= <BooleanExp> || <BooleanExp>
 <Not> ::= !<BooleanExp>
 <GreaterThan> ::= <LeftOperand> > <RightOperand>
 <GreaterThanOrEquals> ::= <LeftOperand> >= <RightOperand>
 <LessThan> ::= <LeftOperand> < <RightOperand>
 <LessThanOrEquals> ::= <LeftOperand> <= <RightOperand>
 <Equals> ::= <LeftOperand> == <RightOperand>
 <NotEquals> ::= <LeftOperand> != <RightOperand>
 <InSet> ::= <LeftOperand> @{ <Set> }

 <InRange> ::= <LeftOperand>
 @[<RightOperand>, <RightOperand>]
 <Paren> ::= (<BooleanExp>)
 <Set> ::= <RightOperand> | <RightOperand>, <Set>
 <LeftOperand> ::= Variable
 <RightOperand> ::= Variable | Value
 <Bool> ::= true | false

Most Boolean guards will be of a rather trivial nature.
The availability of a rich language, however, allows archi-
tects to establish intricate relationships among variation
points. For instance, one can model that selection of a
particular variant in one variant type should lead to the
selection of a specific other variant in another variant type
by carefully matching the Boolean guards on the variants.

Graphically, optional elements are shown using dashed
lines. The component PRINT in Figure 3, for instance, is
an optional component. Note that, because the PRINT
component is optional, its link to the connector BUS1 is
automatically optional as well. If the PRINT component is
included in a particular product architecture, the link is
included as well; otherwise, it is left out.

Ménage treats variant types in a special way. Instead of
containing a subarchitecture of components and connec-
tors, a variant type only contains references to other types.
As shown in Figure 4, references are guarded with mutu-
ally exclusive Boolean expressions to ensure that only
one type can be selected at a time. The guards are used to
ensure that only a single spelling checker component can
be selected covering one particular language. Of note is
that, in the case of the example, the interfaces on the vari-
ants are exactly the same to the interfaces on the overarch-
ing variant type. The general rule that is followed in Mé-
nage is that interfaces may differ, but that optionality

should be used to ensure compliance. For instance, sup-
pose that the Dutch spell checker also has an interface for
thesaurus functionality. Such an interface should be de-
clared optional at the level of the variant type, since not
all variants provide this interface. This guarantees com-
patibility within the remainder of the product line archi-
tecture, irrespective of which variant is eventually se-
lected.

When an instance of a variant component or connector
type is used in a product line architecture, Ménage high-
lights that component or connector. This makes it easier
for an architect to locate variation points (see, for exam-
ple, the annotation of the SPELL CHECKER component in
Figure 3).

Of note is that, because optionality is expressed at the
level of the structure of the product line architecture and
because variability is expressed using types, the two
seamlessly combine to create optional variant elements.
To do so, an architect adds a new instance of a variant
type and annotates it with a Boolean guard that deter-
mines its inclusion. Given that individual variants may
have subarchitectures, an architect should carefully estab-
lish the layers of variation points that are introduced
within the product line architecture—large and highly
variable hierarchies of elements may be established.

5.3 Selector

Once a number of variation points have been intro-
duced in a product line architecture, it becomes necessary
to be able to resolve those variation points in order to
select one or more product architectures out of the overall
product line architecture. Selection by hand can turn into

Figure 4. Viewing a Variant Component Type.

an arduous task given that a product line architecture may
have many variation points that each may have one or
more complex Boolean expressions as guards. Therefore,
Ménage includes a SELECTOR component to automate the
process.

Given a set of desired properties, which are expressed
as typed name-value pairs, and given a starting point in
the product line architecture (e.g., the “top-level” compo-
nent type from which selection should begin), Ménage
iterates over the product line architecture and attempts to
resolve each of the Boolean guards that it encounters. If it
can fully resolve a Boolean guard to TRUE, the respective
element is included. If it can fully resolve a Boolean
guard to FALSE, the respective element is removed. If a
Boolean guard can only be partially resolved, the element
is included with the reduced Boolean guard attached.
While a single selection may only result in a smaller
product line architecture, iterative use of the SELECTOR
will eventually result in the selection of a single product
architecture.

Shown in Figure 5, the selector can operate in three
different modes. In the first (“Select”), it only attempts to
resolve variation points, but it does not remove any un-

used types or versioned. In the second (“Prune”), it re-
moves unused types and versions from a product line
architecture to clean up the specification. In the third (“Se-
lect+Prune”), it combines the two in one step to mini-
mize manual involvement. Depending on their purpose,
an architect would choose a preferred mode of operation.

6. Evaluation

To evaluate Ménage, we used it to create and evolve an
example product line architecture. Often, actual product
line architectures are considered important organizational
assets that cannot be shared. Based on limited informa-
tion available on an existing product line architecture for
consumer electronics [31], we attempted to create a repre-
sentative but hypothetical example of a software product
line architecture for a highly customizable entertainment
system. The result of our efforts is shown in Figure 6.
The product line architecture consists of 25 component
types, 3 connector types, and 3 interface types, all avail-
able in a number of different versions. The top level ele-
ment, the ENTERTAINMENTSYSTEM, is hierarchically con-
structed out of many other components, some of which
exhibit further subarchitectures (as indicated by the small
triangles in the lower left corner). Numerous variation
points exist in the product line architecture, guarded by a
number of different Boolean guards.

Our evaluation focused on how well Ménage achieves
the four objectives listed in Section 4. We first examined
whether we were able to create a product line architecture
much like one creates an architecture in an environment
such as ArchStudio [20] or AcmeStudio [14]. For simple
architectures, Ménage operates exactly like those envi-
ronments. Only when an architect must capture evolution
or specify a variation point, Ménage incurs overhead for
the architect. Overhead in general is limited to a few ac-
tions, except in the case of check out: an architect cur-
rently must manually check out, one by one, all the ele-
ments they intend to modify. This clearly is cumbersome,
and will be addressed in an upcoming version of Ménage
(see also below).

The second objective states that variation points
should be explicit within a product line architecture, yet
seamlessly integrated in the design process. Based on
creating the ENTERTAINMENTSYSTEM product line archi-
tecture, we believe we have succeeded in achieving this
goal: optional, variant, and optional variant elements are
clearly identified in a product line architecture, yet easily
incorporated in much the same way regular components
and connectors are specified.

Figure 5. Selecting a Product Architec-
ture.

The third objective pertains to managing evolution: it
should be governed by an explicit change management
process. Ménage provides such a process with its check
out and check in mechanism. Use of these two simple
operations creates a historical archive of all previous ver-
sions of all architectural elements, regardless of whether
the element is a simple interface type or the complete
product line architecture.

The last objective is that Ménage should automate as
much of its support as possible. Our experience in model-
ing the example product line architecture shows that we
have achieved that. The selector component is perhaps the
chief example: based on simple input from an architect, it
automatically selects the desired subset of product archi-
tectures. As mentioned above, the check out operation is
an exception: to reduce the manual effort of checking out
each and every element to be modified, we will develop a
version of Ménage that automatically and saliently checks
out an element when an architect starts changing it. This
should alleviate much of the burden imposed by the cur-
rent change process.

7. Related Work

The work presented in this paper draws from a number
of research areas. Within the domain of software architec-
ture, perhaps the two most closely related technologies are
Koala and Acme. Koala [31,32] is an architecture descrip-
tion language specifically designed for modeling product
line architectures and, as such, shares many of its features
with Ménage. Compared to Ménage, however, Koala does
not include a versioning mechanism to capture the evolu-
tion of a product line architecture. Instead, Koala relies on

an external configuration management system to version
its architectural descriptions. While certainly a viable al-
ternative, this strategy prevents the incorporation of mul-
tiple versions of a single component in a single product
architecture. An additional drawback of Koala is that its
variability is largely code-based and resolved at compile-
time of a particular product; our Selector component pro-
vides this capability at the level of product line architec-
tures.

Acme [14], as supported by the AcmeStudio environ-
ment, is based on a rather different mechanism to capture
product line architectures. Instead of providing specific
language features, Acme’s architecture description lan-
guage is based on the use of constraints to model all sorts
of concepts, including styles, component and connector
types, and product lines. While this provides the advan-
tage of an architect having to know only a few language
constructs, it has the distinct disadvantage that it becomes
difficult to conceptually separate logically different parts
of an actual product line architecture specification. Espe-
cially when the system to be modeled is large, this rap-
idly becomes a serious problem.

UML [26] is a powerful modeling language that some-
times is proposed as a vehicle for modeling software ar-
chitectures. Unfortunately, support for versioning indi-
vidual UML elements (or even whole UML diagrams) and
for expressing variant elements are still in their infancy.
These limitations often result in clumsy endeavors relying
on external tools. Perhaps even more problematic is that
UML is a less than optimal solution for modeling soft-
ware architectures (and thus product line architectures). Its
features, even when extended specifically for modeling

Figure 6. Ménage Applied to the Entertainment System
Example.

software architectures, have been demonstrated to prevent
the accurate modeling of some architectural concepts [25].

Feature-oriented domain analysis (FODA) is an area of
research that has produced models that are very similar to
product line architectures [16]. Instead of representing
architectural elements, however, FODA models represent
features that may or may not be present in a software sys-
tem. Not surprisingly, FODA models include support for
the various types of variation points. FODA, however,
still seems to be in the phase of finding proper languages
to represent features and the authors are not aware of any
extensive support environment for specifying particular
FODA models, nor are they aware of any FODA-based
approaches that account for the presence of multiple ver-
sions—a key feature underlying Ménage.

Finally, our work is related to many contributions in
the field of configuration management [8]. In particular,
configuration management system models such as Adele
[13] and Proteus PCL [29] provide similar mechanisms
for modeling variation points within software configura-
tions. While borrowing concepts from these system mod-
els, our approach is oriented at product line architectures
and, as such, is rooted in architectural concepts that are
not addressed by the field of configuration management.

8. Conclusions

This paper has presented Ménage, an environment for
managing the evolution of product line architectures. Mé-
nage is unique in being a graphical environment that pro-
vides an architect with the ability to specify and evolve a
product line architecture as new product architectures are
added, existing product architectures are modified, and
obsolete product architectures are removed. Key to the
functionality of Ménage is its tight integration of architec-
tural design functionality (to manage the structure of a
product line architecture) with configuration management
functionality (to specify variation points and manage the
evolution of a product line architecture).

We have already embarked on three research directions
in efforts to further enhance the functionality of Ménage.
First, we are examining the role that architectural differ-
encing and merging may play in propagating changes
from one product architecture to another. Currently, an
architect has to manually restructure a product line archi-
tecture to do so, but we intend to adapt our existing archi-
tectural differencing and merging algorithms (which only
operate on single architectures [30]) to be able to operate
on product line architectures.

Our second research effort aims to support an architect
in understanding the structure of a product line architec-
ture. After many changes, the overall structure generally
has disintegrated and the “clean” design picture that once
existed has deteriorated. Using metrics to calculate the
utilization of the functionalities provided by components
in a product line architecture [12], we intend to provide an
architect with graphical visualizations that highlight po-
tential structural problems in the product line architecture.

Typically, these problems indicate a need for refactoring
of elements, for instance splitting a particular variant in a
“smaller” variant and an optional element containing the
rest of the functionality.

Finally, we observe that a realization of the full power
of product line engineering requires a careful mapping
from the product line architecture to actual source code
(components). Maintaining such a mapping is a difficult
endeavor due to architectural erosion. We intend to de-
velop a product line architecture-aware configuration man-
agement system to aid in maintaining such a mapping.

Availability

Ménage can be downloaded from http://www.isr.uci.-
edu/projects/menage/.

Acknowledgements

The authors thank Eric Dashofy for his valuable con-
tributions to the development of Ménage and Rob
Egelink for the implementation of many concepts in Mé-
nage.

Effort sponsored by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Labo-
ratory, Air Force Materiel Command, USAF, under
agreement numbers F30602-00-2-0599 and F30602-00-2-
0608. Effort also partially funded by the National Science
Foundation under grant numbers CCR-0093489 and IIS-
0205724. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either ex-
pressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), the Air Force Laboratory, or
the U.S. Government.

References

[1] R. Allen and D. Garlan, A Formal Basis for Architectural
Connection. ACM Transactions on Software Engineering
and Methodology, 1997. 6(3): p. 213-249.

[2] C. Atkinson, et al., Component-based Product Line En-
gineering with UML. Addison-Wesley, New York, New
York, 2002.

[3] D. Batory and B.J. Geraci, Composition Validation and
Subjectivity in GenVoca Generators. IEEE Transactions
on Software Engineering, 1997. 23(2): p. 67-82.

[4] J. Bosch, Design and Use of Software Architectures:
Adopting and Evolving a Product-Line Approach.
Addison-Wesley, New York, New York, 2000.

[5] J. Bosch, et al. Variability Issues in Software Product
Lines. Proceedings of the Product Family Architecture
Workshop, 2001.

[6] P. Clements and L.M. Northrop, Software Product Lines:
Practices and Patterns. Addison-Wesley, New York,
New York, 2002.

[7] P.C. Clements and N. Weiderman. Report on the Second
International Workshop on Development and Evolution
of Software Architectures for Product Families. Soft-
ware Engineering Institute, 1998.

[8] R. Conradi and B. Westfechtel, Version Models for Soft-
ware Configuration Management. ACM Computing
Surveys, 1998. 30(2): p. 232-282.

[9] E.M. Dashofy, A. van der Hoek, and R.N. Taylor. A
Highly-Extensible, XML-Based Architecture Description
Language. Proceedings of the Working IEEE/IFIP Con-
ference on Software Architecture, 2001.

[10] E.M. Dashofy, A. van der Hoek, and R.N. Taylor. An In-
frastructure for the Rapid Development of XML-Based
Architecture Description Languages. Proceedings of the
24th International Conference on Software Engineering,
2002: p. 266-276.

[11] F. de Lange and T. Jansen. The Philips-OpenTV Product
Family Architecture for Interactive Set-Top Boxes. Pro-
ceedings of the Product Family Architecture Workshop,
2001.

[12] E. Dincel, N. Medvidovic, and A. van der Hoek. Measur-
ing Product Line Architectures. Proceedings of the
Fourth International Workshop on Product Family En-
gineering, 2001: p. 333-338.

[13] J. Estublier and R. Casalles, The Adele Configuration
Manager, in Configuration Management, W.F. Tichy,
Editor. 1994: p. 99-134.

[14] D. Garlan, R. Monroe, and D. Wile, ACME: An Architec-
ture Description Interchange Language, in Proceedings
of CASCON'97. 1997.

[15] G.T. Heineman and W.T. Councill, eds. Component-
Based Software Engineering: Putting the Pieces To-
gether. 2001, Addison-Wesley: Reading, Massachusetts.

[16] K. Kang, et al. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Software Engineering Insti-
tute, 1990.

[17] D.C. Luckham and J. Vera, An Event-Based Architecture
Definition Language. IEEE Transactions on Software
Engineering, 1995. 21(9): p. 717-734.

[18] A. Maccari and C. Riva. Architectural Evolution of Leg-
acy Product Families. Proceedings of the Product Fam-
ily Architecture Workshop, 2001.

[19] J. Magee and J. Kramer. Dynamic Structure in Software
Architectures. Proceedings of the Fourth Symposium on
the Foundations of Software Engineering, 1996: p. 3-4.

[20] N. Medvidovic, D.S. Rosenblum, and R.N. Taylor, A Lan-
guage and Environment for Architecture-Based Soft-
ware Development and Evolution, in Proceedings of the
1999 International Conference on Software Engineering.
1999: p. 44-53.

[21] N. Medvidovic and R.N. Taylor, A Classification and
Comparison Framework for Software Architecture De-
scription Languages. IEEE Transactions on Software
Engineering, 2000. 26(1): p. 70-93.

[22] J. Mellado and J.C. Duenas. Automated Validation Envi-
ronment for a Product Line of Railway Traffic Control
Systems. Proceedings of the Product Family Architecture
Workshop, 2001.

[23] L.M. Northrop. Reuse That Pays: ICSE Keynote Presenta-
tion. Proceedings of the 23rd International Conference
on Software Engineering, 2001.

[24] D.E. Perry. Generic Descriptions for Product Line Archi-
tectures. Proceedings of the Second International Work-

shop on Development and Evolution of Software Archi-
tectures for Product Families, 1998.

[25] J.E. Robbins, et al. Integrating Architecture Description
Languages with a Standard Design Method. Proceed-
ings of the 20th International Conference on Software
Engineering, 1998: p. 209-218.

[26] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified
Modeling Language Reference Manual. Addison-
Wesley, 1998.

[27] M. Shaw, et al., Abstractions for Software Architecture
and Tools to Support Them. IEEE Transactions on Soft-
ware Engineering, 1995. 21(4): p. 314-335.

[28] M. Shaw and D. Garlan, eds. Software Architecture: Per-
spectives on an Emerging Discipline. 1996, Prentice-
Hall.

[29] E. Tryggeseth, B. Gulla, and R. Conradi. Modelling Sys-
tems with Variability Using the PROTEUS Configura-
tion Language. Proceedings of the International Work-
shop on Software Configuration Management: ICSE
SCM-4 and SCM-5 Workshops Selected Papers, 1995: p.
216-240.

[30] C. Van der Westhuizen and A. van der Hoek. Under-
standing and Propagating Architectural Changes. Pro-
ceedings of the Working IFIP Conference on Software
Architecture (to appear), 2002.

[31] R. van Ommering. Building Product Populations with
Software Components. Proceedings of the Twenty-
fourth International Conference on Software Engineer-
ing, 2002: p. 255-265.

[32] R. van Ommering, et al., The Koala Component Model
for Consumer Electronics Software. Computer, 2000.
33(3): p. 78-85.

